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In this paper, we are interested in the influence of grazing collisions, with deflec- 
tion angle near re/2, in the space-homogeneous Boltzmann equation. We con- 
sider collision kernels given by inverse-sth-power force laws, and we deal with 
general initial data with bounded mass, energy, and entropy. First, once a 
suitable weak formulation is defined, we prove the existence of solutions of the 
spatially homogeneous Boltzmann equation, without angular cutoff assumption 
on the collision kernel, for s >i 7/3. Next, the convergence of these solutions to 
solutions of the Landau-Fokker-Planck equation is studied when the collision 
kernel concentrates around the value re/2. For very soft interactions, 2 < s < 7/3, 
the existence of weak solutions is discussed concerning the Boltzmann equation 
perturbed by a diffusion term. 

KEY WORDS: Kinetic equation; homogeneous Boltzmann equation; 
Landau-Fokker-Planck equation; grazing collisions. 

1. I N T R O D U C T I O N  

This paper is concerned with the spatially homogeneous Boltzmann equa- 
tion, (hBE), 

a , f =  Q(f, f )  in R~ + x R~ 3, 
f l ,=0 = f0 in l~ 3 (1.1) 

which arises in the kinetic theory of gases, assuming that the unknown f, 
which physically represents a density, does not depend on the space 
variable. This equation is intended to model the evolution of a rarefied gas 
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752 Goudon 

driven by a binary collision dynamic. The "collision term" is defined by the 
following quadratic operator 

fa B ( v -  v,,  co)(f , f ' - f f , )  dv, den (1.2) Q(f' f ) =  ~.• 

with the usual notations f = f ( t ,  v), f .  = f ( t ,  v . ) ,  f '  = f ( t ,  v'), and f .  = 
f ( t ,  v . )  where 

v' = v - (v - v , ,  co) co; P v.  = v.  + ( v -  v . ,  o~) co (1.3) 

are the post-collisional velocities of two molecules colliding with velocities v 
and v,. Let us introduce the following parametrization in the orthonormal 
basis ( ( v -  v , ) / I v -  v,I, e2, e3) of R 3 

f 
co= (cos(O), sin(O)cos(@), sin(O)sin(~,)), 

E0 
dco = sin(O) dO d$ 

(1.4) 

The kernel B is a non negative function which only depends on I v -  v,I and 
on the deflection angle 0. The precise form of B is closely related to the 
intermolecular potential. We focus our interest on the physically relevant 
cases where the forces between two particles separated by a distance r take 
the form F ( r ) =  1/r s, with s >  1. This assumption leads to the following 
expression for the collision kernel 

I 
n ( v - v , ,  co)= I v - v , I  ~ b(O)Icos(0)l-~, 

s - 5 .  s + l  
7 = s _  1 , V - s _  1 

(1.5) 

with, say, b ~ L~([  0, re/2 ]), see refs. 6, 23 ..... We recall that, following the 
terminology introduced in ref. 18, a potential is said "soft" when s < 5 and 
"hard" for s > 5; if s = 5, we are dealing with a gas of Maxwell's molecules. 
The case s =  2 corresponds to a Coulombian potential which is of par- 
ticular interest in view of application to plasma physics, t23" 4,22, 10) 

Without additional assumption on b, the kernel (1.5) presents a strong 
singularity for the so-called "grazing collisions" with angle 0 near zc/2. For 
such collisions the deflection is small and there is pratically no difference 
between the post-collisional velocities v', v, and the velocities v, v, before 
the collision. Then, some compensation effects are expected between large 
values of the impact parameter and the quantity f ' f , - f  f ,  which vanishes 
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when 0 = zc/2, so that the integral (1.2) makes sense. Usually, difficulties are 
avoided by assuming more regularity on the kernel, requiring in particular 
the integrability of B on the sphere $2,. On a physical viewpoint, such a 
property is guaranteed when grazing collisions are neglected, t's) This so- 
called "cutoff assumption" allows us to split the collision term as follows 

f Q(f f )=  Q + (f, f ) -  Q - ( f  f), 

Q-(f, f )  = fLf;  L f  = ;s'- B(., co) dco *L, f 
(1.6) 

The splitting (1.6) remains essential in most of the existence results concern- 
ing the Boltzmann equation (see for instance the theory of "renormalized 
solutions ''~'3'24) and the surveys ~6"7)) while very few papers have been pub- 
lished on the Boltzmann equation without the cutoff assumption. 
Nevertheless, consideration of grazing collisions is performed, for the 
homogeneous and non homogeneous Boltzmann equations, in ref. 31 
where a local in time existence result is established in Gevrey classes, 
including kernels (1.5) with s > 3 and without angular cutoff assumption. 
In the more general context of integrable solutions, the global existence for 
(hBE), still with s > 3, is discussed in ref. 2. 

A related question arises when we are interested in the effect of grazing 
collisions. Some relations are expected from phenomenological arguments ~23' 6~ 
with the Landau-Fokker-Planck equation, (LFP), 

c3, g = F(g) in R + x R3v, 

gl,=0 =f0  in R~ (1.7) 

where F is the (nonlinear) differential operator of order 2 defined by 

F(g) = V.  f Iv - v,I ~+ 2 S ( v -  v,){ g(v , )  V g ( v ) - g ( v )  Vg(v,)} dv dv,  (1.8) 

with S(z)= I - ( z |  z)/lzl z. The formal convergence, for smooth functions, 
of the operators Q, to the operator F, involving an unphysical small 
parameter e and functions b, which tend to a Dirac mass ~o=~/2, has been 
studied in ref. 11, for inverse power force laws with s > 2. The Coulombian 
case, s = 2, is considered in ref. 10 where b, is a cutoff function and a physi- 
cal interpretation of e is given in connection to the "plasma parameter." 
A first approach of the convergence of solutions of (hBE) to solutions of 
(LFP) has been outlined in ref. 3, under rather restrictive assumptions on 
collision kernels and initial data. We also mention that some recent 
progresses in relation to this subject have been obtained independently in 
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ref. 32 and a part of the results discussed in this paper was announced in 
refs. 16, 17. 

In this paper, we complete and generalize previous works of ref. 2 and 
ref. 3. First, we introduce a new weak formulation for (hBE), slightly dif- 
ferent from those of ref. 2, which allows us to obtain an existence result for 
inverse power force laws up to s I> 7/3, without cutoff assumption on the 
collision kernel. Next, we consider kernels which concentrate around the 
value 0 = n/2, setting in (1.5) 

b(O) = b,:(O) = bz~,/2-~.,/2,(O) (1.9) 

i.e. almost each collision is grazing. After a suitable time scaling, we study 
the convergence to (LFP). Our main results are the following. 

T h e o r e m  1. Let f0>_.0 satisfy ( l+v2+l ln ( fo ) l ) fo~L ' (R3) .  We 
assume that B is given by (1.5) with 7/3 ~<s<5. If s~>5, we assume 
moreover (1 + vZ)~fo~L'(R3) with r > ( 3 s -  7 ) / (2s -2) .  Then, there exists 
a weak solution f in the sense of Definition 1, of (1.I) satisfying 

sup f ( 1 + v 2 + I ln(f) l )  f dv <~ C~, 
t~>0 

(1.10) 

where Cs0 only depends on fo. 

Theorem 1 justifies the existence of a sequence f~ of weak solutions of 
(hBE), associated to kernels B, given by (1.5, 1.9). We set, for s 4= 2 

1 
g~(t, v)=f~(F~t, v); F ~  t =  c -'-2/~s- l~ (1.11) 

2 -  2 
s ...... 1 

Then, (LFP) is derived from (hBE) by letting e ~ 0. 

Theorem 2. Let 7/3~s~<3 andfo~>0 satisfy (1 + v 2 +  Iln(fo)l) fo~ 
LI(R3) .  If s >  3, we assume moreover ( 1 + vz)~fo ~ L I ( R  3) with 2 t> r > / 2 -  
2 / ( s -  1 ). Then, there exist a function g: R~ + ~ L'+ (R 3) and a subsequence, 
still labelled g,, such that for a.e. t > 0 ,  g~(t) converges weakly in L ' (R  3) to 
g(t) and g is a weak solution of (1.7)-(1.8), in the sense of Definition 2. 

The results discussed in this work are obtained for general, and physi- 
cally natural, initial data of bounded mass, energy and entropy; we require 
a bound on higher moments not exceeding 4 for potentials s > 3. (It seems, 
however, that conditions on higher moments could be relaxed if one con- 
siders hard potentials, see refs. 12, 33). The scaling (1.11) involved here 
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indicates that grazing collisions produce non negligible effects on long time 
and (LFP) retains these contributions. Finally, for very soft interactions, 
up to the Coulombian potential, an existence result is proved adding a dif- 
fusive perturbation term in the Boltzmann equation. 

Theorem 3. Let fo>~O satisfy (l+v2+lln(fo)l)foeL'(R3). We 
assume that B is given by (1.5) with 2 < s < 7/3. Then, there exists a weak 
solution f e C ~  L'([R3v))~L2(O,T; LP([R~)) with 1 <.p~3/2, in the 
sense of Definition 3, of the Fokker-Planck-Boltzmann equation (4.1). 

This work is organized as follows. Section 2 is devoted to the homo- 
geneous Boltzmann equation without cutoff assumption. In Section 3 we 
discuss the influence of grazing collisions and the connection to the 
Landau-Fokker-Planck equation. In Section 4 we complete our existence 
results for very soft interactions, considering the Fokker-Planck-Boltzmann 
equation. 

2. H O M O G E N E O U S  B O L T Z M A N N  E Q U A T I O N  W I T H O U T  
C U T O F F  A S S U  M PTION 

This section is devoted to (hBE), when the collision kernel B is given 
by (1.5) without cutoff assumption: the function b" [0, lr/2] ~ R + which 
appears in (1.5) does not truncate "grazing collisions," we only require that 

O<~b(O)<~b. (2.1) 

First, we introduce a definition of weak solution, suitabily adapted to (1.1). 
Next, according to ref. 1, a sequence of approximated problems is construc- 
ted. Finally, the existence of weak solution is justified by passing to the 
limit in the approximated formulations. 

We define a weak formulation for the problem (1.1) when the collision 
kernel presents a singularity given by (1.5). This formulation makes sense 
requiring only a "natural" L l regularity on the solutions f and is obtained 
reasoning by duality-transposition. Let r be a test function; at least for- 
mally one has 

f' [ O, f(r, v) r v) dv dr 
l 0 �9 

to  t o 

f'f f'f = Q ( f  f )  r dv dv = f f ,  W~ v,)  dv, dv dv 
4) to 

(2.2) 
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where 

~sB(V-v , ,  co)(r r d~o WO(v, v,)= ~,o (2.3) 

Then, we expand r as 

r - r = r e ( v ) .  ( v ' -  v) 

l 
+ fo oZr " (v'--v)(~ (v ' - -  v)(1 --U) du (2.4) 

where A : B  denotes the contracted product ~i. j A oBo of two matrices A 
and B. We split the right hand side of (2.2) as follows 

f Q(f  f ) r  dv=q( f  r = ql(f, r  q2(f d?) (2.5) 

where q~(f r involves ith derivatives of the test function r By using (1.3) 
and the change of variable v, v, ~ w, ,  w one remarks that 

qt(f  r  - f  f(v) f (v , )  Vck(v) . f B (v -  v,, og)(v- v,, o9) o) dco dv dr, 

= -�89 f f (v)f(v,)(Vr re(v,)) 

�9 f B(v - v , ,  o ) ) ( v -  v , ,  co) 09 deo dv d r ,  (2.6) 

Moreover, (1.4) yields 

ff " o9 d~ = 2re cos(0) 
U ~ U ,  

I v - v , ]  
(2.7) 

Finally, for a collision kernel given by (1.5), we deduce that 

ql(f  r = --rdb f f(v) f (v , )  Iv-- v,I ~+' (VC(v)- V C ( v , ) ) . ~  

where 

U~U, 

I v - v ,  I 
dv dv , 

(2.8) 

Ib = f,/2 b(0) sin(0) 
, o  dO (2.9) 
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In particular, it is worth pointing out that the integral Ia is finite for all 
functions b satisfying (2.1) provided s > 2. 

The second order term reads as follows 

q2(f, q~) f f(v) f(v,) IV V,I r+2 {f:/2 ;f,~ f~ = _ D 2 r  

x ( 1 - u )  du " co| d~ b(O) sin(O) dO~ ,iv dr ,  
Icos(O)l ~-2 J 

(2.10) 

' the space of test functions r R/+ x [~3 ~ R con- Let us denote by C2. oo 
tinuously differentiable with compact support in R +, twice continuously 
differentiable in R 3 and such that 

I1r =sup  
I, V 

r 
l + v  

2 -I-  s u p  
1, v 

+ sup [DoZe[ < ~ .  
I, V 

Previous computations suggest to introduce the following weak formula- 
tion for (hBE). 

Defini t ion 1. We say that f: R + -~ L t(R 3) is a weak solution of 
(1.1), for a collision kernel (1.5), if for all r e C'2, o~, one has 

-foffa,r foe(O, v)a  

= - r c z ~  f f ,  Iv - v,I ~§ (Vr V r  
Uml), 
iv_ v,l dV dv, dr 

+ f f ,  l v - v , I  ~§ 

X D2r + u(v'--  v))( 1 - u) du: 

b(0) sin(0) ) 
co | co d$ Icos(~i ~-~ dO dv dr ,  dr (2.11 ) 

with Ib defined by (2.9). 

Definition 1 is allowable by remarking that expressions (2.8) and (2.10) 
make sense for C e C '  and (1 +v2)rf~.Ll(~3), with r > ~ ( 3 s - 7 ) / ( 2 s - 2 ) .  2, oo 

Indeed, we have 
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Lemma 1. 
has, for i e { 1, 2}, 

Let s i> 7/3. Then, denoting tr = (3s - 7)/(2s - 2), one 

( )2 
Iq'(f,r I1r f(1 +v2)"fdv (2.3) 

Proof.. Obviously, lYe(v) - Vqb(v,)[ ~ ]lDZ~bll,o~ I v -  v,[ holds for r 
in C ~ Thus, one gets 2 ,  ct:~ �9 

Iq '(f ,  r ~< ZCIb IID2r f f(v) f(v,) Iv- v, I '+  2 de de, 

For s >I 7/3, we have y + 2 = ( 3 s -  7 ) / ( s -  1 ) >i 0, then, by using the elemen- 
tary inequality I v - v ,  lY+2<~C,.(lvly+2+lv,I y+2) we deduce immediately 
the asserted bound for q~(f r Similar considerations apply to q2(f, ~b). 

O 

Remark 1. For a weak solution f in the sense of Definition 1, we 
cannot, in general, split the term q~(f, r given by (2.8) since V r  
Vr compensates the singularity with respect to the velocity of the colli- 
sion kernel. Furthermore, this definition allows us to extend the result of 
ref. 2 up to s t> 7/3 and also will reveal the natural connection to (LFP) in 
Section 3. 

Remark 2. For soft and Maxwell's potentials, 7/3 ~< s ~< 5, we have 
0 ~< a ~< 1. Then, (2.12) can be evaluated by using bounds on mass and 
energy. 

By truncation, we define a sequence of approximations of the collision 
kernel (1.5) 

B.(v-v,,  O)=b(O)Icos(O)l -"  z . ( O ) I v - v , I  ~-~ 2 . ( I v -  v,I)  (2.13) 

where we denote by 

if 0~<0~< 2 

x.(O) = otherwise 

Izl 

~ , ( Iz l )=  n 

0 

if 1 -<~ lzl <~n 
n 

if Izl > n  

otherwise 

(2.14) 



Boltzmann Equations and Fokker-Planck Asymptotics 759 

Obviously, for each n, the kernel B. is bounded, 0 ~< B . ( v - v . ,  O)<~ C. 
where C. behaves like n" + tyl. Then, we recall the following existence result, 
see [ 1 ]. 

L e m m a  2 [1].  Let f0~Ll+(R 3) and let B,, be defined by (2.13)- 
(2.14). Then, there exists a unique solution jr," R + ~ L ~+ (R 3) of ( 1.1 ). If, 
moreover, v2fo e L ~ (R 3) then, for all t > 0, we have + 

f (1 ,  v, v 2) f . ( t )  dv = f ( 1, v, I) 2) L do (2.15) 

and, i f fo ln( fo )eL ' (R3) ,  then t~-+J f , ( t )  ln( f , ( t ) )dv is a non increasing 
function of time. 

Throughout the paper, the initial data fo is assumed to satisfy at least 

f fo(1 + v 2 + Iln(fo)l) dv < oo (2.16) 

so that Lemma 2 yields 

sup f f .(1 + v 2 + Iln(f.)l) dv < Cr, ' (2.17) 
n, I 

where the constant Cjo only depends on (2.16) (see for instance ref. 13). 
Furthermore, it can be shown a useful estimate on higher moments of the 
solutions, considering hard or Maxwell's potential. 

L e m m a  3 [15]. Let s>~5 and fo satisfy (2.16). Moreover, we 
assume Ivl*fo e L ! (R3), k > 2. Then, we have + 

sup f Ivlk f , ( t )  dv < C,. f,, (2.18) 
tl, l 

where C,. f,, only depends on s and on the moments of fo of order not 
exceeding k. 

Next, let us establish the following remarkable equi-continuity result. 

L e m m a  4. Let 7/3~<s~<5 andfo  satisfy (2.16). If s > 5 ,  we asstifne 
moreover (1 + v2)rfo ~ LI(R 3) with r 1> ( 3 s -  7 ) / ( 2 s -  2). Let r e C ~ We 2 , 0 0 "  

set F,( t )= ~ f , (  t, v) r t, v) dr. Then, one has 

IFn(t,)-F~(t2)l < Cz~,io I1r Itl -t21 (2.19) 

where Cz~. so depends on s, Ih and fo. 



760 Goudon 

Proof Since f ,  satisfies the weak form (2.11), we have 

IFn(t,)-F.(t2)l 

f Jr i" ' f . ( z ,  v) O,O(z, v) dv dr + (q~(f., d?) + q](f . ,  dp)) dz 
"2 "2 

with q~(f., ok), q](f., ~) defined by (2.8) and (2.10) respectively, where 
b(O) lv -v . I  ~ is replaced by b(O)X.(O)lv-v . l~- '2 . ( Iv-v . I ) .  Then, 
Lemma 1 leads to 

IF,,(t,)-F,,(t2)l 

~< II~,lt (1 + v  2) f,,dvdr+C~lh (1 +vZ)'f,  dv dr 
\ t2 "2 

Hence, for 7/3 ~< s ~ 5, since 0 ~< tr ~< 1, it follows that 

(s (; ]F,,(t~)-F,(tz)l<~ltl-tzl 114'11 (1 "+'V 2) fodv+Cslh . (1 "+'U 2) fodv 

by (2.15). If the potential is hard, then tr > 1 and the asserted estimate is 
obtained by using the additional assumption on the initial data and 
Lemma 3 

\ 

IF,,(tl)-F.(tz)l <~ lt, ~ t 2 ]  I1~11 ( / ( 1  + v  2) fodv+ C~IbC 2 } 
q S, f o  \ J  / 

with Cs. So depending on s and on the moments offo of order not exceeding 
2r. l"q 

Combining (2.17) with Lemma 4, one deduces the following compact- 
ness property. 

L e m m a  5. Let 7 /3~<s<5 andfo  satisfy (2.16). Ifs~>5, we assume 
moreover Ivlkfo ~ L l (R 3) with k > 2a = (3s -7 ) / ( s -  1 ). Then, there exist a 4- 

function f :  R + ~ L t (R 3) and a subsequence, still denotedf ,  such that, for 
4- 

each time t I> 0 and all ~ satisfying I~b(v)l/(1 + v2)=~< C, one has 

lim f f.(t) ~ dr= f f(t) ~b dv 
~ " - * 0 0  

(2.20) 
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Proof. First, by using the diagonal process of Cantor and the 
Dunford-Pettis criterion, one deduces from (2.17) that we can extract a 
subsequence, still labelled f , ,  such that for each rational i-~> 0, f,(i-) con- 
verges weakly to a function f ( f )  in L ~ (R 3) In fact, the bounds on f,, see q .  - 

Lemma 2-3, imply that convergence (2.20) holds for such i-. Now, pick a 
non negative time t e R \ Q .  We set f ( t ) = l i m i ~ _ . t f ( f )  in LI(I~3). By 
(2.17), we can assume that f,,(t) converges weakly to a function g in 
L ~ (R3). The proof is completed by showing that g = f ( t )  To this end, we + 

use Lemma 4. We set G(r = lim, _. ~ F,(t) and F(r = ~ f( t ,  v) r dr. 
Then, for r ~ C ~ 2. ~, one has 

]G(r162 < IG(r  f .(r + IF . ( r  F.(r 

+ I F . ( r  F(~b)(f)[ + I F ( r  F(r 

where i-is a rational approaching t. Fix e > 0. By (2.19) and the definition 
off, we deduce that 

sup IF,,(r162 + IF(r162 <~ 
n 

holds when f is sufficiently close to t. Furthermore, choosing n large 
enough gives 

IG(r162 + IF, , ( r162 <e. 

Hence, IG(r162 ~<2e. Thus G(r162 for regular function 
r which leads to f ( t ) =  g. Vi 

It remains to pass to the limit n ~ ~ in the following weak formula- 
tion satisfied by f ,  

f E LOtr  du d ~ -  for du l 2 - = ( q , , ( f . , C ) + q . ( f , , C ) ) d r  

where we recall that, for i e { 1, 2}, 

(2.21) 

q / ( f . ,  r  f .f.(v) .f.(v,) WCn'i(v, V,)de de,  (2.22) 



762 Goudon 

with 

w.  ~, '(v, v , )=  -~Io(Vr r e ( v , ) ) . ~  
O m O ,  

Iv-v,I Iv-v*l~'L'(Iv-v*l) 

W~'2(v, v,)  = D2r + u(v' - v))(1 - u )  du co| dO 
"0 

b(0) sin(0) } 
xz.(0) Icos(0)l ~-z dO Iv- v, I ~+~ 2.(Iv- v,I) (2.23) 

and/, ,  = ~,~/z z.(O)((b(O) sin (0))/Icos (0)l v-z) dO. 
There is no difficulty to pass to the limit in the left hand side of (2.21). 

Also it is obvious that W~' ! and W. ~ converge almost everywhere to 

w~. '(v, v , )=  -~I~(Vr r e ( v , ) ) . ~  v -  v, Iv-  v,I ~+ l 
Iv-v,I  

W~'Z(v, v.)  = DZtk(v + u(v' - v))(1 -- u) du " co@co dO 
aO 

b(0) sin(0) } 
x icos(~i=:~ dO I v -  v,I y+- (2.24) 

respectively with 

sup IW~"l, sup IW~,21, IW~"l, IWg'21 < c~ IIq~ll Ib(1 +v  2) (1 + v ,  
n n 

(2.25) 

Thus, Lemma 5 implies that, for i e { 1, 2}, 

F~ "~ (t, v)= f f~(t, v .)  W~"(v, v .)  dr.  ~ F~ v) 

=~ f(t, v,) w~.'(v, v,)-dv, 

a.e. and, moreover 

[F~'i[, IF*' i[ ~< Cs.fo [[r Ib(1 + VZ) ~ 
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Hence, the right hand side of (2.21) converges to 

f : ( q , ( f  r + q2(f, r dr 

Finally, the proof of Theorem 1 is achieved by remarking that estimate 
(1.10) is a classical consequence of (2.17) and Lemma 5. We also note that, 
for s~> 5, assuming [vlXfoeZ'(R 3) with k>~ 2, Lemma 3 leads to 

f Ivl*f dv ~< C.. ~, (2.26) 

R e m a r k  3. Conservation of energy. It is clear from (2.26) that a 
sufficient condition, when s >I 5, to obtain the conservation of energy is 
given by ]vlZ+X, foEtl(~3), with x > 0 .  However, according to ref. 2, we 
can prove that, for 3 ~< s ~< 5, the conservation of energy holds assuming 
vZfoeL'(R3). Indeed, in this case r  2 satisfies 

Iv-v,l'+' f(v) f ( v , ) V r  
V--V, 

Iv-v,I 

<C(1 + Iv-v,I)  f(v) f(v,)lvl<C(1 +v2+v~) f(v) f (v , )  

this last term being integrable on ~3x~3 .  It follows from (2.12) that 
B(v-  v,, co) f(v) f(v,)(v '2-  v 2) is integrable on R 3 x I~ 3 x S 2, therefore 

Q(f, f ) v  2 dv=O. Let e r e  Co'([~ 3) approximate v 2. Then, from the weak 
form, we obtain 

f ( t )r  foCRdV+ Q(f, f)r 

Letting R ~ ~ ,  we get finally ~ f(t) v 2 dv = ~ fo v2 dr. 

We conclude this section by a discussion on the higher moments of the 
solutions, concerning soft potentials. This result is adapted to our context 
from ref. 2 and will be needed in next section. 

l . e m m a  6. Let 7/3~<s~<5 and fo satisfy (2.16). If, moreover, 
(1 -+-v2)rfo~.Zl(R 3) for some 1 ~<r~<2, then the solution f of (1.1)obtained 
in Theorem 1 satisfies for all t > 0, 

f (  1 + v2)rf(t, V) de < e q,zh' f ( 1 + v2)'fo dv (2.27) 

with Co depending only on r and (2.16). 
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Proof Let us introduce a test function e r e  C~ defined by 

r = (1 + V2) r on B(0, R), supp(~bR) c B(0, 2R), 0 ~< CR(V) ~< ( 1 + V2) ", 
IV~r <C(1 +V2) ~-'/2, ID2C~(v)l <c(1 +V2)  r - '  

(2.28) 

Writing 

•• ~r - - v )  d u  VCR(V) -- VCR(v.) = D R(V + U(V. V))(V, 

one gets 

I CR)I q~(f,, 

f 2)r-- 1 2 r-- 1 <~Ihr~ f.(v) f . (v , )  [V--V,[~'+28r-'c,.(1 +V (1 + v , )  dvdv, 

since r t> 1, while the collision kernel is evaluated by using 

Iv-v,l~+z ~<(1 + Iv- v,I)2 ~<4((1 +v2) +(1 +v2)). 

for 7/3 ~< s ~< 5. This implies that 

[q,~,(f,,, Cg)t <lbZ~8"c. f f .(v)(l +v2)rdv f f . (v . ) ( l  +v-.) ' - '  dv. 

holds. A similar conclusion can be drawn for q~,(f,, C R). With 1 ~< r ~< 2, 
(1.10) gives 

f f.(t, v) r 

f ~< fo(V) OR(v) dv + Iq~.(f,,, r + [q,2(f., r dv 

~< f fo(v)(1 + v2) r dv 

f + Ib3Z~8rc,. fo(V)( 1 + V 2) dv f~(l:, v)( 1 + rE) ~ dv dr 
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Letting R ~ oo, we deduce that 

f (1 + v2)~f,(t, v) dv <~ f (1 + vZ)~fo(v) dv exp(t. Ib3ZCSrCr f (1 + V 2) f0(v) dr) 

holds by applying Gronwall's lemma. Hence, we conclude by using the 
weak convergence of f , ( t )  to f( t) .  I-7 

3. INFLUENCE OF GRAZING COLLISIONS, 
LANDAU-FOKKER-PLANCK EQUATION 

According to the existence result proved in Section 2, we can consider 
a sequence of kernels B~. which concentrates on grazing collisions. Then, in 
this section, we wish to investigate the behaviour of the associated weak 
solutions f,: of (hBE) when e goes to 0. First, we define a weak formulation 
for (LFP), rather close to Definition 1. Next, we introduce a suitable time 
scaling and, then, we establish the convergence stated in Theorem 2. 

Definition 2. We say that g: [~+ ~ LI+(IR 3) is a weak solution of 
i (1.7)-(1.8), if for all r e Ca, ~, we have 

-- f :  f gO,r dv dr - f  foe(0, v)dv 

= gg,  l v - v , I  ~'+! - 2 ( V r 1 6 2  - /3,1 

Iv-- v,I D~r �9 S ( v -  v,)}  dv dr, dr (3.1) + 

Formally, this definition remains equivalent to (1.7)-(1.8), since one has 
for sufficiently regular functions 

f F(g, g) C dv 

= - f  I v - v , ]  ~+2 S ( v - v , ) ( g ( v , )  V g ( v ) -  g(v) Vg(v,))-  Vr dv, dv 

= f gg,  Iv -v , I  ,§ S ( v - v , )  " DZr dv, dv 

+ f gg,(div~- divv,)(lv - v,[ y+ 2 S(v - v ,)) .  Vr dv, dv (3.2) 
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and one remarks that 

div~(Iv-v,I ~+2 S ( v - v , ) ) =  -div~.(Iv-v,I  ~+~ S ( v - v , ) )  

= - - 2 I v - - v , [  y+l v - v ,  (3.3) 
I v - v , I  

Hence, repeating (2.6), we obtain (3.1). In particular, the estimates of 
Section 2 ensure that the right hand side of (3.1) makes sense for ~ ~ C'  2.~ 
and (1 + v2)~g integrable on R 3 with r i> a ' =  2 - 2 / ( s - 1  ). In Definition 2, 
we denote by C'  the space of test functions ~ ~ C' three times 3 , ~  2 ,  o o ~  

continuously derivable in v with bounded third derivatives (the regularity 
C 3 will be needed later to pass to the limit e ~ 0). 

We consider a sequence of collisions kernels defined by 

f B~.(v- v,,  co) - Iv-  v,I ~ Icos(O)l-~ b,:(O), 

b~.(O) = 2 Z~,/z-,.~/z)(O) 
(3.4) 

Such a kernel only sees scattering with deflection angle near zr/2. For 
s~> 7/3, Theorem 1 guarantees the existence of a weak solution jr,..: 
R, + ~ L'  (R 3) of (1 1) in the sense of Definition 1. Moreover, we can also + 

deduce from the previous section that (1.10) holds uniformly in e. 
One remarks that, for s > 2, the behaviour of L. is given by 

'l )1 - C O S  - -  g , ~  - 
2 L ' - 3  v g~Sv 

F 2  - -  2 ~ I s  - -  ! ) 

2 -  2 / ( s -  1) 
(3.5) 

Then, we set 

F 2  - -  2 / ( s  - -  I ) 

F , - ' =  (3.6) 
2 - 2 / ( s -  1) 

and we introduce the following time scaling 

g,(t, v)=f,(F~t,  v) (3.7) 

In other words, we are studying the influence of grazing collisions with 
deflection angle l r / 2 -  e ~< 0 ~< ~r/2 for time scale of order F,. 

Estimate (1.10) implies that 

sup sup f (1 + v 2 + Iln(g~)l) g~ dv ~ C A 
e > O  t > ~ 0  

(3.8) 
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holds for an initial data f0 satisfying (2.16). Moreover, when 7/3~<s~<5, 
assuming (1 + v2)~fo ~ LI(R3), with 2 >I r >  2 - 2 / ( s - 1 ) ,  Lemma 6 gives 

f (1  +v2)r g,.(t,v)dv<. C~,/o,r (3.9) 

for all t e [ 0, T], where Cr, fo, r depends only on r, T and fo but not on e. 
Such an estimate holds globally in time for s >i 5, see (2.26). 

Finally, by plugging in (2.11) the following test function 

r v ) = r  v) (3.10) 

with r e C ~ 2, o r ,  we are led to 

Ef ; -- g~(z, v) Ore(z, v) dv d r -  foe(O, v) dv 

= (0~( g,., r  q~.(g,:,..2 r dr (3.11) 

where we adopt from now on the following notation 

O~(g,:, r  -- ~zI~F,: f g~(v) g~.(v,) Iv - v,I ~'+l 

v - v ,  dv dv (3.12) x(Vr162 , 

and 

q~(g,:, r  
~z g.(v) g,:(v,)Iv v.I y+2 

If '2 ;;';2 X D2r + u(v'-- v))( 1 -- u) du" 
L "~ h i 2  - -  e. 

s i n ( O ! )  
oo| dO icos(O)]-_ 2 dO dr,  dv (3.13) 

The following lemma legitimate our interest in the convergence when e goes 
to 0 in (3.11). 
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L e m m a  7. Let 7/3 ~< s ~< 5 and fo satisfy (2.16). If s > 5, we assume 
moreover Ivlkfo6L'(R3) w i thk>~(3s -7 ) / ( s -1 )>2 .  Letck6C ' Weset 2,  c ~ "  

G,(t) = ~ g~(t) clb dr. Then, one has 

IQ(t2)-G~.(t,)l <~ Cj-o I1r It2 - t , I  (3.14) 

where CIo depends on fo and s. 

Indeed, combining Lemma 7 with estimates (3.8)-(3.9), one deduces 
the following analogue of Lemma 5. 

Coro l la ry  1. Let 7 / 3 ~ s < 5  and fo satisfy (2.16). If si>5, we 
assume moreover Ivl*fo ~ L'(R 3) with k > 2a = (3s - 7 ) / ( s -  1 ). Then, there 
exist a function g ' R  + ~ L'  (R 3) and a subsequence, still denoted g~. such + 

that, for each time t 1>0 and all r satisfying [r + v2)~< C, one has 

lim f g,:(t) ck dv = f g(t) ck dv 
e. --* O 

(3.15) 

The proof follows arguments in Lemma 4-5 and is omitted. 
We achieve the proof of Theorem 2 by passing to the limit e--, 0 in 

(3.11). In fact, there is no difficulty to pass to the limit in (3.12) and one 
gets immediately for the first order term 

lim "' f q~(g~., r  --2 g(v) g(v,) I v -v , I  ~ + '  
~ ---~ 0 

v - v ,  dv dv (3 16) • (Vr Vr iv_ v,-----~ * 

Indeed, ~(g~, ~) reads as follows 

4~(g~, r  F~ ] g~(v) g~(v,) w~, '(v, v,) dv, de (3.17) 

with W~'' defined by (2.24), b~ replacing b. Then, on the one hand, by the 
definition (3.5)-(3.6), we have 

lim zH~F~ = 2 (3.18) 
e ---* 0 

and, on the other hand, 

2 o" F~ I W~' ~(v, v,)l ~< I1r Cs(1 + v 2) (1 + v,)  (3.19) 
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This is sufficient to justify (3.16). To deal with ~2(g~, r given by (3.13), we 
expand r up to order 3 

1 
r162 = Vr ( v ' -  v) + ~  DEC(v) " (v'-- v) |  (v'-- v) 

f2 ( l - - u )  2 + 2 D3r "~" U(V'--  V))(/)' --  V) | du (3.20) 

Therefore, we note that 

~~ '~ co| d~ = rcS(v - v,) + rc cos2(0)(2I - 3S(v-  v,)) (3.21) 

Then, we split 

~R ~2(g~, r  ,(g~, r  ~ ,  2(g~, r + q~ (g~, r (3.22) 

where 

-2 I ~ f q~' (g~, r =-~ F~I~ g~(v) g~(v,) Iv-- v,I r+ z DZr S ( v -  v,) dv, dv 

-2 2( q~' g~, r = F~J~. g~(v) g~(v,) Iv -  v,ly+2 
d 

(3.23) 

X D2r : (2I-- 3S(v-  v,)) dr, dv 

with 

frt/2 sin(0) 
L =  in/2__ e ICOS--~;__ 4 dO (3.24) 

and R q~ (g~, r is a remainder term depending on third derivatives of r The 
behaviour of -El q~" (g~, r when e tends to 0 allows us to complete (LFP), 
since 

l im ~2 1 f ,-.0 q~' (g~' r  g(v) g ( v , ) I v - v , I  r+2 DEr dr, dv (3.25t 

Indeed, -2 1 q~' (g~, r takes the simple form 

q~' g, r g,(v) g~(v,) W~'E(v, v,) dv, dv (3.26) 

822/89/3-4-19 
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with, 

F. I W~.2(v. v,)l =F=L Iv-v,I  '§ ID2q~(v)'S(v-v,)l 
2),, ~< I1r (1 + v2)'~ (1 + v ,  (3.27) 

due to (3.18). We conclude by (3.15). It remains to show that ~2,2(g~, q~) 
and ~R q~ (g~, q~) tend to 0 with e. Indeed, the following inequality 

(; )2 
I~z'2(g~., r < C~.F~L I1r . (1 + v2) " g~ dv (3.28) 

holds with J, given by (3.24) and, furthermore, we get 

(f )2 
-.'R Iq. (g~., ~b)l < C,F,K~. IID3r (1 + v2)"g, dv (3.29) 

where a' = 2 -  2 / ( s -  1 ) and 

f,/2 sin(0) 
(3.30) 

Since F,K~ and F,J~. behave as e and e z respectively for small values of e, 
"'2 " R U2)  o" q .2(g~, ~) and o q, (g,, r tend to 0 provided (1 + v 2) g~. and (1 + g, 
are bounded in L'(R3). For 7/3~<s~<3, we have 0-N<a'~< 1, and it is 
sufficient to assume (2.16) which implies (3.8). For s >  3, we require 
moreover the integrability of ( 1 + v2)~fo with 2 >i r 1> 2 - 2 / ( s -  1 ) to con- 
clude by using (3.9). Then, the proof of Theorem 2 is complete, i--1 

4. VERY SOFT INTERACTIONS:  
FOK KER-PLANC K - B O L T Z M A N N  EQUATION 

In this section, we are dealing with the Boltzmann equation, perturbed 
by a diffusive Fokker-Planck term, still in the space homogeneous context, 
namely 

O t f =  Q ( f  f )  + v d f  iii Rff x R 3~ (4.1) 

with v > 0. We consider very soft interactions up to the Coulombian poten- 
tial, namely 2 < s < 7/3. Indeed, (2.9) suggests that the angular singularity 
is controlled for s >  2, while, for very soft interactions, main difficulties 
arise from the singularity with respect to the velocity in the collision kernel. 
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The weak convergence f , - --~f  in L l is not sufficient to pass to the limit in 
terms (2.22)-(2.23) which behave as 

f L(v) L(v,) Iv- v, I >'+~ dv & ,  

where y + 2 < 0  for s <7/3.  The introduction of the diffusion term vAf 
allows us to obtain some bounds in L p spaces with p > 1 large enough to 
justify the passage to the limit. Moreover, we expect that the Boltzmann 
operator is close, in some sense, to the Landau-Fokker -P lanck  operator 
when taking into account grazing collisions. Then, our approach is also 
motivated by the fact that a linearization of the LFP operator leads to the 
diffusion term vAf see ref. 19, ref. 20 and the references therein. Keeping 
the notations of'Section 2, we define the weak formulation for (4.1) in a 
natural way from Definition 1. 

Definition 3. We say that f :  R + --, L I ( ~  3) is a weak solution of 
(4.1), for a collision kernel (1.5), if for all ~ e C l 2, oo~ one has 

-;oSiO ,~ & & -  f fo~(0, v) & 

g ; = ( q , ( f  r + qZ(f r + v JAck dr) dr (4.2) 

We shall prove the existence of such a weak solution. First, let us 
recall some a priori estimates on the solutions of (4.1). These estimates 
provide some additional compactness on sequences f ,  of (approximated) 
solutions and, then, we will pass to the limit n--, oo. 

By integrating (4.1) with respect to the variable v, one obtains the 
classical properties of mass conservation d/dt ~ fdv=O,  momentum con- 
servation d/dt ~ v f  dv=O and increase of kinetic energy d/dt ~ v2f dv= 
6v ~ fo dr. By using the equality V(v / - f )=  Vf/2 x/r-f, we also get 

d 
dt f / ln(f) , iv + fH(i)dv +4v flV( v/-f)12 d~ =o 

where J H(f )  dv = J B(v - v. ,  o~)(f ' f ,  - f f . )  l n ( f ' f ' . / f f . )  dco dr.  dv >~ O. 
Then, for an initial data fo of finite mass, energy and entropy we are led 
to the following bounds for f on 0 ~< t ~< T < oo, ~ ~4) 
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I f ( 1 + v 2 + Jln(f) J) f dv <~ CA, r, v, 

(4.3) 

where Cso ' r,~ denotes a constant depending only on f0, T, v. Let us define 
the following functional space 

x= {~. R3--, ~, f(1 +v 2) Ir d~< oo, f lvr d~< oo} 

Therefore, following ref. 5, one has 

X c  W I" I(R3) C BV'(~ 3) c L P ( ~  3) 

for 1 ~< p ~ 3/2. We deduce that 

f is bounded in Z2(0, T; X ) c  Z2(0, T; Lp(R3)) (4.4) 

Indeed, it is known from (4.3) that f is bounded in L2(0, T; L l(l~3)). It 
remains to estimate 

f IV(f)i dv ds~4 f fodv f : f  IV(x~)12dv ds~ Cfo. r,v 

by combining the Cauchy-Schwartz inequality and (4.3). 
Next, our aim is to establish an estimate on 0, f in a suitable space of 

distributions. To this end, we use the weak formulation (4.2) which yields 

<Otf~ r ~(R3) = q'(f ,  r + q2(f, r  V f fAr dv 

It follows that 

I<c~tf~r162176176 f ff, ID--v. JY+2dDdv,-[-v f f riD) (4.5) 

holds with - 1 < y + 2 < 0 for 2 < s < 7/3. However, by using the Hardy-  
Littlewood inequality, t2s) we have 

f 2 (4.6) f f  * dv dr, <~ Cy Ilfll Lp~R3) 
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where fi > 1 is given by 2/f i -(? ,  + 2)/3 = 2, i.e. 

7 - 3 s  
/7= 1 + 9 s -  1---'-~ (4.7) 

We note that 1 < fi < 3/2 for all 9/5 < s < 7/3. Let us denote by ~ = 82(R 3) 
the space of distributions T of order 2 o n  R 3 which satisfy 

IITII~ =sup  {I(T,  ~b)_______~[ ~b~ CoXD(R3)t < oo 
II~ll cg ' 

By (4.6), estimate (4.5) becomes 

l[0 fll~<~2rdbCy I[f[I 2 (4.8) , L. + v IlfllL, 

Then, by combining (4.3), (4.4) and (4.8), we are led to 

II0, fll L,to. r, ~) ~< 27rlb Cy II7112 L=(o. r: L,tR-')) + V Ilfll L'(o. r, L'(~')) ~ Cfo,  v, T. 

(4.9) 

By truncation and regularization of the collision term, one may consider a 
sequence f ,  of approximated solutions to the Fokker-Planck-Boltzmann 
equation (4.1), see for instance ref. 14 (see also refs. 19, 20). By (4.3), this 
sequence is weakly compact in L'(O, T; L~(R3)); however, such a compact- 
ness property is not sufficient to pass to the limit n ~ oo in the weak for- 
mulation (4.2). The diffusion term gives additional properties on the 
sequence f,,. Indeed, previous computations prove the following 

L e m m a  8. The sequence f ,  is bounded in L2(0, T; X) and O, f,, is 
bounded in L~(0, T; ~).  

However, X embeds compactly in Lq(R 3) c off for 1 ~<q < 3/2, ref. 5. 
We apply Corollary 4, p. 85 of ref. 30, to deduce the following essential 
compactness property. 

C o r o l l a r y  2. The sequence fn is compact in L2(0, T; Lq(R3)) for 
1 ~< q < 3/2. 

Corollary 2 allows us to consider a sequence f , ,~ f in L2(0, T; 
Lq(R3)), for 1 ~ q < 3/2; in particular the convergence holds for q =f i  given 
by (4.7). To show that the limit f is a solution of (4.1) in the sense of 
Definition 3, it remains to pass to the limit in the collision terms written 
as in (2.22)-(2.23 ), 

qi,,(f,,, ~)= f f,,(v) F~n'i(v) do (4.10) 
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with 

F~'i(v) = f fn(V,) W~n'i(D, V:$) dD$ (4.11) 

Obviously, one has W~" g(v, v,) ~ W *' ~ (v, v,) a.e. R 3 x R 3 and 

IWZ"(v, v,)l, IW*"(v, v,)l < CIb IID2r Iv-- v,I ~§ (4.12) 

Then, one remarks that 

[[F~" iIILr, R3)< CIh IID2r f f.(v) dv 
I v _  v , l - , ~  +2 , 

< C~Ib IlD2~blIL~ IIf,,(v)IIL,(~3~ 

L'( R 3) 

(4.13) 

holds for 1/r= l /p-1 + ( - ( y  + 2)/3), see refs. 21, 29. In particular, the 
choice r = p' (Holder's conjugate of p) leads to p =/~. One deduces that 

F~"--. Fe~"= f f(v,) W~'a(v, v,) dr, (4.14) 

strongly in L2(0, T; LP'(R3)). This allows us to pass to the limit n ~ oo in 
(4.10) and gives (4.2) which ends the proof of Theorem 3. I-'1 

CONCLUDING REMARKS 

A similar analysis can be drawn for the linear Boltzmann equation 
(and also, certainly, for the linearized Boltzmann equation, according to 
ref. 11). The simplicity of the collision operator allows us to consider more 
singular kernels and the results obtained in ref. 17 (where the existence 
results of refs. 25-27, 8 are extended up to s > 2) may indicate what kind 
of behaviour we can expect for the Boltzmann equation (1.1). Indeed, it is 
worth pointing out that the study of the influence of grazing collisions 
reveals different behaviour depending on the position of s with respect to 
the critical Coulombian case. Namely, for s > 2, concentrations of the colli- 
sion kernel on zr/2, produce effects described by the Fokker-Planck equa- 
tion on a large time and space scale. On the contrary, for Coulombian and 
very soft interactions 9/5 < s ~< 2, truncations, neglecting grazing collisions, 
lead to the Fokker-Planck equation on a short scale (logarithmic in the 
Coulombian case). These results are in agreement with physical analysis 
which explain that, for Coulombian interaction, collisions with large 
impact parameter have a dominating influence, (23' ~0) and require to take 
into account some screening effects in the modeling of the interactions. (22" 4) 
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We also refer to ref. 10 and ref. 32 for further developments in this direc- 
tion. 
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